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1 Abstract 

This report summarizes the research done under the in-house effort titled “Optimal 

Methods for Modulation Classification.” The purpose of this research is to revisit the 

problem of blind demodulation and develop classification algorithms for wide set of 

signals types. The effort explores two methodologies in Decision Theory: Likelihood Ratio 

Test and inference methods using Expectation Maximization.  The focus will be mainly in 

types such as QAM, MPSK and BPSK Spread Spectrum. The algorithms must have medium 

complexity and provide some optimal classification. 

In this report, we explored the challenges of constructing LRT rules for BPSK spread 

spectrum.  Simple assumptions such as assuming statistically independent waveform 

coefficients proved to be inappropriate to develop such rule. An assumption of using a 

probability distribution based on the Total Square Correlation resulted to be effective, 

although it turn out to be a complicated procedure for waveforms coefficients derived 

from 4x4 Hadamard matrices. 

The second approach used was based on Information Divergence. This approach can be 

adapted for multiple modulation schemes. It was effective for simple modulation schemes 

such as BPSK, QPSK and QAM16, but it has convergence problems for complex 

constellations. Future work will apply the same technique to spread spectrum signals and 

will try to improve the convergence. 

Finally, this research explored MIMO codes design. The purpose was to design codes that 

exceeded the performance of the Full-Rate, Full Diversity Golden Codes. The approach 

consisted in searching for linear 2x2 MIMO codes that can allocate 6 symbols instead of 4.  

Although it was possible to find such codes; however, none of the codes that were found 

exceeded the performance of the Golden Code. 
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2 Introduction 

Existing methods in modulation classification can be grouped in three categories: heuristic 

methods, feature based and decision theory classification.  

Heuristic methods are derived from the observation of the signal in time and frequency 

domains. Examples of these are: the Phase Histogram classifier was proposed by Lifdtke 

(Lifdtke, 1984) and the well-known Mth Law Classifier for MPSK signals. The performance 

of these methods is unpredictable.  From a research point of view, heuristic methods have 

minor importance in the area of modulation classification. 

Feature-based methods rely on the heuristic selection of features, but introduce a more 

scientific approach by using clustering algorithms for decision making.  These methods are 

more popular in the literature and they make use of statistical moments. (Dobre, Abdi, 

Bar-Ness, & Su, 2007) They use data set for the characterization of the signals under 

classification. The performance of these methods is known to depend on the training data.  

Examples of these methods are the Statistical-Moment Based Classifier presented by 

Soliman (Soliman & Sue, 1992) and the Sombrero Classifier developed by Army RDECOM. 

Finally, the decision theoretic methods are based in Bayes Decision Theory.  These 

methods offer superior performance because they are optimized for minimum probability 

of error. (Huang & Polydoros, 1995)  Methods based on optimal decision theory are less 

abundant in the literature due to the complexity in the development of such algorithms. 

They require good models and some appropriate optimization criterion for deriving the 

optimal detector. The algorithms are designed to guarantee the best performance in low 

SNR. The few known methods of this kind are signal-specific and most of them apply 

simple MPSK and QAM models. 

The purpose of this research is to extend the decision theoretic methods to broader sets of 

signals while trying to minimize the complexity of the algorithms.  To achieve this goal, we 

will explore two paths: the development of likelihood approaches and the use of an 

entropy based method known as the Minimum Divergence Principle (MDP). 

The discussion of this report is organized as follows: First, the MPSK Likelihood Ratio Test 

will be revisited and modified to accommodate spread spectrum signals. As an alternative 
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approach, inference methods such as EM and MDP will be applied to MPSK/QAM and then 

extended to spread spectrum.  Apart from decision theoretic methods, the report explores 

the design of MIMO codes for optimal performance. MIMO codes are considered a spatial-

temporal modulation with the purpose of understanding MIMO codes and extending 

classification algorithms to this set of signals.  
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3 Modulation Classification Methods 

3.1 Existing Likelihood Methods 

Various classification methods using decision theory can be found in the literature. These 

methods targets a specific set of signal that include a combination of MPSK and QAM. 

Table 1 shows some of these developments. (Dobre, Abdi, Bar-Ness, & Su, 2007) 

Table 1. Existing Decision Theoretic Methods 

Method Signal Types Authors 

ALRT BPSK, QPSK Huang, Polydoros (Kim & 

Polydoros, 1988) 

ALRT MPSK Huang, Polydoros (Huang & 

Polydoros, 1995) 

ALRT 16PSK, 16QAM Sapiano (Sapiano & Martin, 1996) 

GLRT 16PSK, 16QAM Panagiotou (Panagioutou, 

Anastasoupoulos, & Polydoros, 

2000) 

HLRT 16PSK, 16QAM, 64QAM Dobre (Dobre, Modulation 

Classification in Fading Channels 

using Antenna Arrays, 2004) 

EM BPSK-SS Yao, Poor (Yao & Poor, 2000) 

 

The list is not exhaustive, but helps to understand some of the challenges in the area of 

research. Average Likelihood Ratio Test (ALRT) requires taking the expectation of all 

unknown variables. The unknown variables are: the symbols, which are usually several 

hundreds or thousands; the phase offset; and the time offset.  Integrating over hundreds 

symbols is possible if the symbols are considered statically independent, then the 
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expectation (i.e., integration) of products becomes the product of the expectation (i.e., 

integration). 

Some developments have tried to simplify the integration by performing a finite sum. 

These methods are known as Quasi-ALRT. Other methods just provide a good estimate of 

some unknown parameters. The methods are known as Generalized LRT. Other methods 

contain a mixed of methodologies. These methods are called Hybrid-LRT. 

The methods in Table 1 may correspond to one of the types listed in Table 2. 

Table 2. Summary of Modulation Classification Methods 

Likelihood Based Feature Based 

Likelihood Ratio Test (LRT) Expectation Maximization 

Approaches (EM/MDP) 

Statistical, Histogram and 

Spectral Features 

Goal: Classification of MPSK  

or QAM 

Goal: Classification of MPSK, QAM 

and Spread Spectrum 

Goal: Classification of MPSK, 

QAM 

Approach: Derivation of a 

rule for classification using 

the signal model 

Approach: Inference of the 

likelihood distribution from the 

correlator output 

Approach: Generation of 

features using peak power and 

frequency information; 

classify signals using 

deviations in frequency or 

amplitude 

Assumptions: Test a single 

test signal, 

Cases: Coherent Detection, 

Non-coherent Detection, or 

Asynchronous detection 

 

Assumptions: Test a single signal, 

Requires time synchronization, 

Non-coherent Detection 

Assumptions: Test multiple 

non-overlapping signals in a 

wide spectrum. May have 

multiple modulation types. 
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Likelihood Based Feature Based 

Likelihood Ratio Test (LRT) Expectation Maximization 

Approaches (EM/MDP) 

Statistical, Histogram and 

Spectral Features 
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Classification Criteria: 

Decision Tree Classification 

using features from histogram 

 

Strengths: 

Optimal performance 

Strengths: 

Does not require complex 

equations, extended to Spread 

Spectrum 

Strengths: 

Easier implementation 

 

Weaknesses: 

Complex decision rules or 

non-analytical. Limited 

implementation to MPSK and 

QAM 

Weaknesses: 

Convergence problems; multiple 

local minima 

Weaknesses: 

Susceptible to power 

fluctuations; Inability to 

differentiate narrow band 

signals and tones. 
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3.2 Likelihood Ratio Test (LRT) 

One of the most relevant papers found in modulation classification is “Likelihood Methods 

for MPSK Classification”.  This was the first method in departing from feature-based 

classification by developing simple rules for classifying the set of MPSK, i.e., BPSK, QPSK, 

8PSK, 16PSK and others.  The method validated existing heuristic Mth power law. It 

showed that the developed rules were special cases of a more general decision rule. The 

method served as a starting point for developing classifiers of spread spectrum signals. 

3.2.1 MPSK Model 

We consider a baseband, finite sequence of symbols    with a phase offset      carried by 

non-overlapping normalized pulses  ( ). The number of symbols is   and the duration of 

each pulse is  . The signal  ( ) is a superposition of pulses modulated by the respective 

symbols, as shown in (1). The energy of each symbol is represented by E. 

 ( )    ∑ √      
    (    )

   

   

                 (1) 

For MPSK information symbols the symbols have amplitude of one and discrete phases 

which are uniformly distributed around the unit circle, (2). The M represents the number 

of symbols. In the case of BPSK signal, M = 2. 

            
   

 
                 (2) 

3.2.2 Decision Theoretic Approach 

The likelihood function is just a density function conditioned to a given hypothesis. (3) If 

the stochastic model is a composite model with several parameters beside the random 

variables, the probability density function is referred as a conditional likelihood function. 

 ( | )   ( | ) (3) 

The likelihood ratio is the ratio of two likelihood functions under two hypotheses. 
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 ( )  
 ( |  )

 ( |  )
 (4) 

When we deal with signals, we talk about processes.  A process is a random event that can 

be characterized with a parametric probability density function (pdf). The random 

variable   is replaced with all the possible indexed variables  ( ).  If   ( ) is a set of 

Gaussian independent variables the variance is infinite: 

 ( ( )| )     
    

∏
 

√   

  | ( )  ( )|    

  

   
      

 (5) 

Redefining a likelihood ratio for process requires introducing the notion of orthogonal 

basis representation. A process  ( ) will be decomposed in arbitrary but deterministic 

basis functions   ( ) as shown in (6). Using the assumption of a wide sense stationary 

process (7)-(8) and treating the transmitted signal as a deterministic process, it is possible 

to compute the likelihood ratio for a finite bandwidth process. (See Appendix A) 

 ( )  ∑    ( )

 

   

 (6) 

 { ( )}    (7) 

 { ( ) ( )}  
  

 
 (   ) (8) 

For an AGWN process, the likelihood functions are defined according to (9). The 

hypothesis H is implicitly stated in the model chosen for the transmitted signal  ( ). 

 ( ( )| )   
 
( ( )  ( )) 

   (9) 

Most of the complexity of (9) appears when we consider unknown parameters such as 

symbols   , phase offset    (                     ), symbol period, and time offset (time 
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synchronization). In this case, the conditional likelihood needs to be averaged over all 

possible symbols. 

3.2.3 Case 1: Averaging Over Unknown Symbols 

Averaging over symbols is done under the assumption of a known distribution. In the 

worst case, it is assumed that the symbols are equally distributed. In the case of MPSK, we 

have: 

 (      )  
 

 
  (      ) (10) 

 (  |    )  
 

 
 ∑  (     (     ))

   

   

 (11) 

 ( ( )| )          
{ 

 
( ( )  ( )) 

  } (12) 

The statistical independence of each symbol allows separating the expectation of all 

symbols into the product of the expectations (13). This may bring some computational 

benefits. 

          
{ 

 
( ( )  ( )) 

  }  ∏   
{ 

 
( ( )  ( )) 

  }

   

   

 (13) 

3.2.4 Case 2: Averaging Over Unknown Phase 

The previous equation is a case of the GLRT when the phase offset    is unknown. The 

generalized likelihood method uses the best estimate of    rather than averaging over all 

possible values of the parameter. 

For MPSK case, the distribution of    is assumed to be uniform, i.e., there is no preference 

in the values. 

 (  )  
 

  
  (14) 
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 ( ( )| )     
{        

{ 
 
( ( )  ( )) 

  }} (15) 

3.2.5 Case 3: Averaging Over Unknown Timing 

Perhaps, the most important parameters are time offset and symbol period. Recovering 

the symbols would be almost impossible without any of these parameters. Yet, many 

literature papers make the assumptions that unknown signals are perfectly synchronized. 

One may argue that a preamble must be present in any communication system and thus it 

is possible to synchronize signals with high degree of accuracy. 

The time offset synchronization is modeled by an error in the limits of the integration in 

the correlator as shown in (16) and (17).  Equation (18) is the overall expression for the 

likelihood of a signal with unknown data, phase offset and time offset. 

  ( )  ∫  (    ) ( )   
(   ) 

  

 (16) 

  ( )  ∫  ( ) (    )   
(     ) 

(   ) 

 (17) 

 ( ( )| )    {   
{        

{ 
 
( ( )  ( )) 

  }}} (18) 

3.2.6 Development of MPSK Classifiers 

The development of optimal decision rules tries to simplify the equations usually by 

changing the order of the expectations, reducing the equations using Taylor 

approximation and using some other desirable means of simplification such as taking the 

log-likelihood. 

3.2.6.1 Averaging Over the Symbols 

For a synchronous MPSK detector, the likelihood function is given by (19). A new 

parameter    is defined as the correlator output (20). The parameter   is the signal-to-
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noise ratio at the output of the correlator.  The details of this development are shown in 

Appendix B. 

 ( ( )| )  ∏   
{ √    {   ( )   

      }   }

   

   

 (19) 

  ( )   
 

√    
∫   ( )  (  (   ) )    

(     ) 

(   ) 

 (20) 

Averaging over an arbitrary symbol provides the standard form of the likelihood function. 

 ( ( )|   )       ∏
 

 
∑      (√    {   ( )  

 
    

      })

     

   

   

   

 (21) 

Equation (21) can be conditioned on phase and time offset parameters by taking the 

expectation over those parameters as shown in (18). 

Huang and Polydoros (Huang & Polydoros, 1995) noted in a binary hypothesis test of 

 ( ( )| ) and  ( ( )|  ), where     and both   and    are powers of two, it was 

possible to reduce (20) into two expressions.  The first expression is a common term 

shared by  ( ( )| )  and  ( ( )|  ) as a function of    and the second term is a function 

of  . The term provided in (22) will serve as the decision rule for MPSK signals. 

     { ( ( )| )}    { ( ( )| )}

   {  {   
{   (

 

 
(
 

 
)
   

  {(∑(  ( ))
 

   

   

)     })}}} 
(22) 

The term (  ( ))
  is the heuristic power law detector for MPSK signals. Given an ideal 

MPSK signal  ( )         ( )  , the power law detector produces a constant response 

 ( )         ( ) in the baseband signal and a fixed tone in the cosine modulated signal. 

The rule for the non-coherent detection case is shown in (22). Later on, during the 

discussion of the development of the spread spectrum detector, we will show that the 
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detection rule is identical. The conclusion is: it is not possible to distinguish a spread 

spectrum signal from an MPSK signal based on simple assumptions of independent 

waveform coefficients. 

3.2.6.2 BPSK Spread Spectrum Model 

The case of spread spectrum signals shows some similarities to the MPSK classifier. In this 

scenario, we deal with complex waveforms instead of simple pulses.  The waveforms 

belong to a set of mutually orthogonal or quasi-orthogonal waveforms according to (23) 

and (24).  Each waveform will serve as a separable coding channel. The spread spectrum 

signal is the superposition of modulated waveforms according to (25).  

  ( )  
 

√  
∑     (  (   )  )

   

   

                (23) 

∫   ( )  ( )  
 

 

       (24) 

 ( )   √
 

  
     ∑ ∑     ∑     (      (   )  ) 

   

   

   

   

   

   

 (25) 

Under MPSK hypothesis with unknown phase and time offsets, the likelihood takes the 

following form: 

 ( ( )| )

    {   
{                

{                
{ 

 
  

∫   {  ( )   (   )}  
   
  

 
  

∫ | (   )|   
   
 }}}} 

(26) 

The energy term of the received signals was removed from the equation because it is 

constant. The transmit signal term is kept because the amplitude of the spread spectrum 

signal is no longer constant. It is easy to note the complexity of this expression. The 

expectation must be taken over each possible combination of waveform coefficients and 

symbols.  In the case of binary spread spectrum signals, the integral would require       

integrations. 
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We started a simple development by averaging over simplistic assumptions. We begin 

assuming that the waveform coefficients and symbols are statistically independent. This 

would allow having an equation similar to (19), where the expectation of product equals 

the product of expectations. 

3.3 Development of LRT for BPSK-SS 

3.3.1 Simple Averaging Over the Waveform Coefficients and Symbols 

A synchronous BPSK spread spectrum detector, the likelihood function is given by (27). A 

new parameter    is defined as the correlator output (28). The parameter   is the signal-

to-noise ratio at the output of the correlator.  The details of this development are shown in 

Appendix B. 

 ( ( )| )                  
{ 

 
  

∫   {  ( )   (   )}  
   
  

 
  

∫ | (   )|   
   
 }  (27) 

   ( )   
 

√     
∫   ( )  (  (   )   (   )  )    

(   ) 

(     ) 

 (28) 

Assumption #1: The energy term of the transmitted signal will be treated as a global 

constant. The distribution of the overall symbol amplitude (29), which is the sum of the 

symbols times the waveform coefficients, is a binomial distribution. 

 [ ]  ∑ ∑     ∑     (     (   ) ) 

   

   

   

   

   

   

 (29) 

The term is                  
{ 

 
 

  
∫ | (   )|   
   
 } is a function of the variance of  [ ] which 

depends on the number of users U and length of the spreading code L. So the only term of 

interest is the correlation term. 

Assumption #2: The waveforms coefficients are statistically independent. The likelihood is 

simplified to (30). 



 

Approved for Public Release; Distribution Unlimited. 
14 

 

 ( ( )| )  ∏∏    

   

   

{ 
 
  

∫   {  ( )   (   )}  
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  (30) 

It was found that the assumption is not useful. Averaging over statistically independent 

symbols will also yield a product of terms as in (31). 

 ( ( )| )  ∏ ∏     
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∫   {  ( )   (   )}  
   
 }

   

   

}

   

   

   

    

  (31) 

A lengthy development reveals that using a second assumption results is equivalent to the 

BPSK likelihood. The conclusion is: the assumption of statistically independent coefficients 

does not allow differentiating between a BPSK signal and a BPSK spread spectrum signal. 

3.3.2 Weighted Average over the Waveform Coefficients and Symbols 

The proposed approach uses a statistically dependent distribution for averaging over the 

waveform coefficients.  The approach requires us to design a waveform density based on 

some metric that characterizes spreading sequences. We consider the metric: Total Square 

Correlation (TSC) defined as the Frobenius norm of the correlation matrix. 

Let   {   } be the matrix of waveform coefficients row   and column  .  Also consider a 

row vector representation     [                ]. The correlation matrix is defined as 

(32).   (Cotae, 2003) 

   ( )  ∑ ∑|       
 |                 

   

    

   

   

 (32) 

A modification of this metric was used for our density as shown in (33). 

 ( )  ∑ ∑|       
 |   

   

    
    

   

   

 (33) 



 

Approved for Public Release; Distribution Unlimited. 
15 

 

For a binary spread spectrum, the coefficients take two real values:       , so any 

power also stays in the same range:    
    .  The density for statistically dependent 

coefficients is (34).  

     ( ) (34) 

 ( )  (    )   ∑ ∑ ∑∑            

   

   
   

   

   

   

   
   

   

   

 (35) 

The expression of the likelihood (36) is complicated and further analysis will be provided 

in a future report. In the present discussion, we are going to develop the likelihood 

function for the simplest case      . 

 ( ( )| )

 ∑∑ ∑  √ ∑ ∑ ∑   {    ( )   
    

       }   
     ∑ ∑    

    
       

   
   

   
     (   )   

   
   
   

              

 
(36) 

3.3.3 Simple Case:  2x2 Hadamard Coefficients 

The likelihood for detecting 2x2 Hadamard coded spread spectrum was computed in (37) 

assuming statistical dependency of the waveform coefficients. The results were 

encouraging as we can see from Figures Figure 1-Figure 3. A derivation of the likelihood 

was done in Mathematica. (See Appendix C) 



 

Approved for Public Release; Distribution Unlimited. 
16 

 

 ( ( )|  {               })

 
 

    (     )
(   √           ( √    (   ))

         ( √    (   ))

       (    ( √    (   ))     ( √    (   ))))   

  √   

(37) 

 

 

Figure 1. Likelihood of BPSK 

 

The likelihood of the spread spectrum signal can be decomposed in two terms: the 

individual BPSK terms for     and    , and  the product of both terms.  The LRT test gives 

acceptable results for SNR ranges between 0 and 5 dB.  For higher ranges, the test has 

problems due to overflow (1000 chips used) and the test breaks for levels below -5dB. 

BPSK 

samples 

BPSK-SS 

samples 
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Figure 2. Likelihood of BPSK Spread Spectrum 

 

Figure 1 and Figure 2  show the likelihood for BPSK and BPSK Spread Spectrum.  Both 

likelihoods can be approximated using Gaussian distributions. The empirical receiver 

operating characteristic (ROC) curve is shown in Figure 3. 

 

 
Figure 3. ROC Curve for LRT test 

H0: BPSK, H1: BPSK-Spread Spectrum 
 

BPSK 
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BPSK-SS 

samples 
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3.4 Inference Methods for Classification 

In order to overcome the complexity of our blind demodulation problem, this paper 

proposes to modify a stochastic approach for signal demodulation by incorporating the 

concept of information divergence or “distance” between probability density functions. 

One of the densities provides a parametric model; the second density describes the ideal 

modulation type. (See equations (38, (56) and (58)) The models can describe noise or any 

arbitrary modulation type. An optimization algorithm (54) will adjust the parameters of 

the distribution to fit various models by minimizing the divergence. The decision is made 

by selecting the smallest “distance” instead of the likelihood ratio. 

The Expectation Maximization approach proposed by Yao (Yao & Poor, 2000) provides an 

iterative method for estimating the parameters in equation (38). The scheme uses BPSK-

SS model with a known number of users. The signal model is: 

   √     ⃗   ⃗  (38) 

Where n is the noise,  ⃗    {  }  is the transmitted symbol vector of length  . The matrix 

S is a     matrix with    users and   the signature size. The S matrix contains the 

normalized spreading sequences   [              ]   E is the energy of the signal. The 

output    is the received vector.  The process can be described with a correlation matrix R: 

 {     }         (39) 

Eigenvalue decomposition provides a means to separate the signal space from the noise 

space.  The highest eigenvalues correspond to the energy of the signals and the associated 

eigenvectors correspond to the signature vectors that form matrix S. 

            (                    ) 

       (          )                

       (          )                 

(40) 

The associated eigenvectors    to the signal space can be used to estimate the matrix   by 

means of (41). 
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       √     ⃗       (41) 

The conditional likelihood function becomes (42): 

 ( |√  )   ∑
 

  

 

(    )   
     ( 

 

   
 
‖   √   ⃗  ‖

 
)

  

   

 (42) 

If  ⃗   is a binary vector, then there are    possible combinations of symbols. The EM 

process adds a new variable to the conditional likelihood.  This parameter is known as the 

missing data   . The missing data is a label that identifies the population or cluster where 

the known variables belong to. In this case, the cluster is any binary pattern formed from 

numbers 0 to     . 

 (    |√  )   ∑
 

(    )
 
 

   ( 
 

   
 
‖   √   ⃗   ‖

 
)

 

   

 (  ) (43) 

The EM method maximizes the expectation of the log-likelihood given the data. This is: 

 ̂         
 

   | {    ( (    |√  ))} (44) 

A detailed explanation of this algorithm explained in (Yao & Poor, 2000).  By using an EM 

approach, the process of maximizing the expectation eventually that converges to the 

waveform coefficients in matrix   without dealing with the complexity of the ALRT. 

According to the paper, the estimation of the waveform coefficient offers a slightly worse 

performance compared to a minimum square error estimator during the demodulation.  

The worse performance is expected because MMSE assumes known waveform parameters 

while in the EM approach the estimation is totally blind. 

The development of the EM estimator allows for applying constraints, but these are not 

explored in the referenced paper. For instance, other possible constraint is to minimize 

the entropy of the likelihood function (45) for all possible signals.  This constraint would 

force that the results reduce the randomness. 
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∑  ( |  )    ( ( |  ))

 

   

   (45) 

3.4.1 Information Divergence Modulation Classifier 

Under the FY11-12 AFOSR Mini-Grant, the concept of information divergence was studied 

as a symbol estimator of unknown signals.  The concept was used as a blind estimator as 

reference (Ding & Kay, 2011) suggested. 

Instead of using a ratio of likelihood functions, the proposed approach uses the Kullback-

Leibler (KL) divergence. KL divergence is a measure of “distance” or dissimilarity between 

two distributions. Given two distributions  (   ) and  (   ), the Kullback-Leibler 

divergence is defined by (46): 

   ( || )    ∫ ∫  (   )  (
 (   )

 (   )
)

  

     (46) 

If two distributions are the same, then it is easy to observe that: 

   ( || )    (47) 

The divergence between two distributions is always positive. (Cover & Thomas, 2006) 

   ( || )    (48) 

The divergence is related to the likelihood ratio.  Consider two distributions  (   ) and 

 (   ), then the divergence between   and   is: 

   ( || )    (    )
{   ( ( ))}    (    ) {   (

 (  )

 (  )
)} (49) 

where  ( ) is the likelihood ratio: 

 ( )  
 ( |  )

 ( |  )
 (50) 
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𝑧  𝑟 𝑧 Encoder Channel 

𝑝(𝑟|𝑧) 

Decoder 

MAP Rule 

𝑏  𝑏    

and   (    ) is the expectation operator. Using divergence is an extension of the concepts 

found in Decision Theory.  The divergence includes an average of the logarithm of the 

likelihood ratio. 

KL divergence has been used in the speaker recognition area. In this problem, a feature 

space vector    contains information that is used to discriminate between speakers. 

Suppose that one has a stochastic model    (  )  such as a multivariate Gaussian 

distribution  (      ) using the features of the population as random variables. Suppose 

that a second Gaussian model describes a target speaker.  A way for designing a decision 

rule   (  )   (      ) between the two classes consists of using a subset of    that 

maximize the divergence    (  ||  ) between the two classes. The distance between the 

data and the model is computed using only the selected features and the class that has the 

“shortest distance” wins.  The concept is similar to the Mahalanobis distance   
  

(      )
   

  (      ) used to discriminate between classes. In fact, the KL divergence is 

equivalent to the Mahalanobis distance when         for unimodal Gaussian distributions 

(Campbell, 1997). 

The proposed modulation classifier uses similar concepts of minimum distance for 

deciding between classes.  The feature space is the complex plane that contains the values 

of the estimated symbols, each one with an in-phase and quadrature component. The 

stochastic model is assumed to be Gaussian.  The true symbols form a constellation which 

can be rotated due to phase incoherency between the transmitter and the receiver. 

We define our communication channel using the diagram of Figure 4. (Cover & Thomas, 

2006) The symbols can be drawn from any arbitrary distribution. It can be circular or 

rectangular QAM or it can have arbitrary constellations. 

 

 

 

Figure 3. Communication Channel 
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The probability of a symbol  ( ) is assumed to be an unknown variable for computational 

purposes.  This prior knowledge must match the implicit probability of symbols in the 

template, as it will be explained later. 

Table 3. Definitions for EM Approach 

Concept: Mathematical Expression: 

Symbol 
    with    being a finite 

discrete set of complex numbers 

Symbol Probability  ( ) 

Observation 
     with    being a  

finite set of complex numbers 

Noise Power Density    
  

 
 

Likelihood of the observation 

 given a symbol (channel noise) 
 ( | )    (    ) 

Probability of a symbol  

given the observation 
 ( | )  

 ( | ) ( )

 ( )
 

Matching density function  ( ) 

Sampled Based 

Kulback-Leibler Divergence 
   ( || )    ∑ ∑  (   )  (

 (   )

 (   )
)

        

 

MAP (Maximum Posterior Rule) for 

choosing between classes C1 and C2 
 ( |    )

  

 
  

 ( |    ) 
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The channel introduces noise of each symbol. The noise model is expressed as a likelihood 

function. The noise is assumed to be AWGN but this model can be modified to other types 

of noise if needed. 

The correlator in the receiver produces the observation r.  For each observed data point 

there is a probability of a symbol given the observation  ( | ).  The maximum posterior 

probability criterion can be used as a decision rule to compute the detected symbol   . 

Bayes’ theorem states that:  

 ( | ) ( )   ( | ) ( ) (51) 

Note that the divergence between  ( | ) ( ) and  ( | ) ( ) is zero: 

   ( ( | ) ( )||  ( | ) ( ))    (52) 

Suppose now that we do not want to use  ( ). Instead, we would like to use a template 

distribution  ( ) .  This template satisfies the inequality: 

   ( ( | ) ( )||  ( | ) ( ))    (53) 

The equality holds only and only if  ( )   (    ) for a given parameter vector   .  If the 

equality does not hold, there is at least a minimum divergence that can be achieved 

between the two distributions according to Kullback’s Minimum Discrimination of 

Information Principle (MDI). (Gray, 2001) The parameter vector can include noise, phase 

and signal energy parameters. In the simulations, only phase incoherency was considered. 

The optimal parameters can be determined using the proposed optimization criterion: 

            
 ⃗⃗ 

   ( (      )||  (      )) (54) 

where  (      )    ( |    ) ( ) and  (      )    ( |    ) (    ). The algorithm can be 

regarded as a stochastic matched filter. 
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Once the optimal parameters have been determined for classes with templates   ( ) and 

  ( ), the decision is made either using the conventional maximum posterior probability 

or using the KL divergence. 

3.4.2 Simulations 

MPSK models and QAM models were considered for the estimation of the parameters.  

3.4.2.1 MPSK Case: 

If symbols   belong to the MPSK class, then: 

  { 
    

              } (55) 

The likelihood model that describes the channel is the simple Gaussian distribution shown 

in (56): 

 ( |     )  
 

(   )   
   ( 

|      |
 

  
) (56) 

The model describes a noisy output with rotated symbols      . The parameter vector 

consists of two quantities, the phase mismatch and the probability of the symbol: 

    [   ( )] (57) 

The template of an arbitrary MPSK hypothesis is: 

 ( |  )  ∑
 

 (   )   
   

(

  
|   

    
 |

 

  

)

 
   

   

 (58) 

Note that the template incorporates the true prior distribution  ( )      .  This is not a 

necessary requirement, but provided a convenient quick implementation. 

Figure 4 to Figure 8 shows the convergence of the algorithm (49) for MPSK signals. The 

observed data     is shown as green dots.  The red dots track the convergence of the data to 



 

Approved for Public Release; Distribution Unlimited. 
25 

 

the model, i.e.,       
    

 .  The blue dots represent the true symbols and the yellow dots 

(barely visible) represent the final convergence.  The black lines represent the decision 

boundaries for MPSK types. (See Figure 5 and Figure 6) 

 

Figure 4. Convergence of the MDI Estimator/Classifier 
using BPSK Data 

 

In Figure 5, we achieved convergence in 4 iterations.  BPSK is the simplest form of MPSK 

types.  Quick convergence is expected even in low SNR levels. 
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Figure 5. Convergence of the MDI Estimator/Classifier 
using QPSK Data 

 

In Figure 5, convergence of QPSK data to QPSK model is achieved in approximately 50 

iterations.  The computational time is still insignificant due to the implementation of the 

algorithm which is based on simple linear algebra and element by element operations. 

In Figure 6, convergence of QPSK data to BPSK model is achieved in approximately 50 

iterations.  The minimum distance between a QPSK and a BPSK densities is achieved when 

we distribute the data equally along the decision line.  The resulting divergence of this 

case is greater than the divergence. In such case, the classifier would decide for QPSK 

instead of BPSK. 
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Figure 6. Convergence of the MDI Estimator/Classifier 
using QPSK Data and BPSK model 

 

The reader might wonder if an algorithm such as Gaussian Mixture Models (GMM) 

clustering algorithm can perform a similar task.  The answer is negative.  Differently from 

the GMM algorithm, the MDI classifier keeps fixed proportions between the symbols (or 

clusters) and prohibits them from moving independently. 

Figure 7 shows a case of a noisy 16PSK signal.  The convergence of cases like this one may 

take several hundred of iterations but running in fractions of seconds.  It is very likely that 

optimal classifiers fail in a case like this one. The only solution to a problem like this is to 

observe more data. 
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Figure 7. Convergence of the MDI Estimator/Classifier 
using 16PSK Data 

 

3.4.3 QAM Case 

The proposed classifier can be flexible enough to incorporate other constellations such as 

QAM models. (Figure 8)  The only requirement is to provide a template as an input.  Other 

constellations (templates) are admissible by just providing a different template 

model  ( | ).   

The output of the algorithm is the optimal parameter vector and the divergence.  With the 

parameter vector, the likelihoods and priors for each observation can be reconstructed.  

This is good feature because these variables not only allow deciding the modulation type, 

buy they provide sufficient information for recovering the symbols and the bitstream. 

In the case of complex constellations (QAM-32, QAM-64), the convergence is less reliable 

due to the multiple local minima that exist.  The method is more likely to work on simple 

constellations like BPSK, QPSK signals and BPSK-SS waveforms. 
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Figure 8. Convergence of the MDI Estimator/Classifier 
using 16QAM Data 

 

3.4.3.1 Divergence for Waveform Estimation 

The benefit of using information divergence is that the method preserves the signal 

constellation proportions and only allows rotation or scaling.  This is a feature the EM 

method does not have. 
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4 MIMO Code Design 

The purpose of this research study is to investigate the MIMO Space-Time Block Codes 

(STBC) and provide if possible an improved design.  In this report, the available codes will 

be presented.  The best-known code will be identified and study for the purpose of 

developing better codes. 

4.1 Introduction 

MIMO is a multiple input multiple output communication systems that transmit 

information from a multiple antenna transmitter to a multiple antenna receiver in the 

presence of fading. One of the benefits that make MIMO system attractive is the increasing 

channel capacity due to the antenna diversity. MIMO systems are currently used in mobile 

networks such as cell phones and routers, where voice and data requires higher 

transmissions rates and better quality of service.  

The design of In MIMO codes is one important topic of MIMO systems.  The codes found in 

literature can be classified in the groups as follows: 

 Layered Spaced Time Coding 

 Space Time Block Coding 

 Trellis Space Time Coding. 

Each code family differs in the degree of complexity versus accuracy. Layered Space Time 

Coding is an example of simplistic codes with a poor performance compared to trellis 

codes with the highest complexity and the best accuracy. Block coding provides a trade-off 

between performance and complexity.  

This report is dedicated exclusively to the study of the STBC. The design of STBC does not 

provide error correction as the Trellis Codes, only mitigation of multipath. The best-

known STBC is known as the Golden Code.  It was developed around 2003 and since this 

date no other code with superior performance has been found. 

Desirable characteristics that make a good code can be described in terms of the following 

properties: 

 Best coding gain 
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 Minimum average power 

 Full rate 

 Lowest complexity 

After a literature search, the research was oriented to study and propose a new scheme 

that exceeds the performance of the Golden Code. For such purpose, we will present in the 

discussion the idea behind the development of the Golden Code before proposing schemes 

and testing the possible advantages or disadvantages of such codes. Then, we will proceed 

to investigate schemes that can provide the properties of good codes.  Finally we will make 

an assessment of the designs and get to conclusions whether there is a better STBC than 

the Golden Code. 

4.2 Space-Time Model 

The problem of finding new codes will be constrained to the case of frequency non-

selective channels, also known as the narrowband case.  We also consider a two-transmit 

two-receive antenna system in the entire discussion unless it is otherwise specified. In this 

scenario, the frequency response of the channel coefficients is flat in the bandwidth of 

interest.  The channel matrix in (59-(60) characterizes the channel fading: 

  [
      

      
] (59) 

where     is the gain of the path between transmitter antenna j and receiver antenna i. The 

relationship between the output and the input signals under fading and additive white 

Gaussian noise is:         or, 

[
      

      
]  [

      

      
]  [

      
      

]  [
      

      
] (60) 

where     is the received signal i at time j;     is the transmitted symbol from receive 

antenna i at time j; and     is the noise seen by receiver antenna i at time j. 
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4.2.1 Criteria for Best Performance 

4.2.1.1 Coding Gain 

In MIMO systems, the role of the code is to transmit information in such way that it 

provides immunity to fading in AWGN.  A metric of performance is the minimization of the 

pairwise probability of error (PEP).  The PEP given a set of transmitted codes    and a 

detected code  ̂   is defined as: 

   
 

 
∑   ( ̂ |  )

   

   
   

 (61) 

The analysis (Paulraj, 2003) shows that the PEP a function of the rank r, the number of 

receive antennas MR, the product of the eigenvalues   of the difference  ̂    . An upper 

bound for the PEP is given by: 

   
 

 
(∏  
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 (62) 

Based on PEP analysis the code gain is given by (63): 

     
 

 √  

(∏  

 

   

)

    

 (63) 

For code design, we consider a fixed physical system were the number of transmit antenna 

MT equals the number of receive antennas MR. We also considered the case when the 

number of time periods equals the number of transmit antennas such as the one shown in 

(60). 

Optimizing PEP requires maximizing the code gain.  This is achieved in two ways: the 

matrix difference  ̂     is full rank.  This is the rank criterion. The second is the 

determinant of the matrix is as large as possible.  The combination of the two criteria 

yields: 
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 √  

|   ( ̂    )|
 

    (64) 

4.2.1.2 Minimum Average Power 

The design the best space-time code requires finding a set of codes     such that the the 

set maximizes the coding gain and minimizes the average power.  We look at the following 

Frobenius norm or a matrix trace for optimality. 

    |   ( ̂    )| 

     (  ) 
(65) 

For comparison purposes between codes sets A and B with the same code rate, we 

normalize the power of A and B and find the highest code gain. 

4.2.1.3 Code Rate 

Code rate is defined as the number of symbols that can be transmitted in a STBC code.  For 

a 2x2 matrix, the maximum number of symbols is 4.  If the code matrix can transmit the 

maximum number of symbols, then the code is known as full rate FR. If in addition the 

code has full rank, the matrix is referred as full-rate, full diversity code (FRFD).  The best 

performance STBC codes are FRFD. 

4.2.1.4 Code Complexity 

A tradeoff between performance and complexity is preferable when the demodulation cost 

of the receiver exceeds the benefit of overcoming the fading effects. Such cost can be 

measured in terms of system power consumption, size and/or processing time. Under our 

discussion, code complexity was not a consideration for the design of the best STBC. 

4.3 Existing MIMO Codes 

The first task in the search for the best performance codes is to consider the existing code 

design through the literature. As we mentioned early, MIMO codes found in literature can 

be classified in the groups. 
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4.3.1 Layered Space Time Coding 

One of the simplest coding schemes is called Horizontal Encoding (HE). In this scheme the 

transmitted symbols are demultiplexed into separate streams or layers through each 

transmit antenna in single or multiple time slots.  Vertical Encoding (VE) is another 

variant where the same symbol is spread through all antennas as opposed of being spread 

through multiple time slots. Diagonal Encoding (DE) transmits the symbols using a 

different antenna at a different time slot. (Sellathurai & Haykin, 2009) Codes like VE or DE 

are in general easy to implement, but not accurate due to error propagation. 

4.3.2 Space Time Block Coding 

Similar to Layered Space Time Codes, these blocks repeats symbols and its complex 

conjugates in a way that the code achieves full diversity.  

4.3.2.1 Alamouti Codes 

Alamouti proposed a 2x2 coding scheme that meets full diversity and simple decoding. 

(Blahut, 2003) The code rate is one symbol per time slot. The design proposed design was 

extended higher dimensionalities. Its code form can be expressed as: 

  [
    

  
   

 ] (66) 

Alamouti codes are linear codes that are orthogonal according to: 

     (|  |
  |  |

 )   (67) 

This property facilitates the simplification of the maximum likelihood demodulator: 

 ̂         
 

‖     ‖ 
  (68) 

 ̂         
 

  √
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  |  |
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  (69) 

Further simplification allows expressing the demodulator by expressing the demodulator 

in separable functions of x1 and x2. 
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Mathematically speaking, the Alamouti code is a Hamiltonian Quaternion isomorphism. A 

Hamiltonian Quaternion is an algebraic structure known as ring that obeys associative and 

distributive laws under addition and multiplication while preserving the same algebraic 

structure of the operands.  This discovery was found latter, with the development of FRFD 

codes. 

4.3.2.2 Quasi-Orthogonal Codes 

Several variants of Alamouti code for higher dimensions have been proposed (Sharna & 

Papadias, 2003). These code matrices are not orthogonal but the demodulator can be 

expressed in separable functions.  For higher dimensionality the code rate of an Alamouti 

and quasi-orthogonal matrices decrease, so the transmission becomes less efficient. 

4.3.2.3 Algebraic Codes 

These codes are developed based on algebraic number theory. The goal of these codes is to 

ensure full diversity and full rate. 

4.3.2.4 Golden Code 

Golden Codes were presented by (Belfiore & Viterbo, 2004) as cyclic division algebra, but 

other isomorphic forms of the code were already known. The Golden Code can transmit 4 

symbols in two time slots and ensure full-diversity.  So far, it is claimed that the Golden 

Code has the best performance of all known codes. 

  [
    

  (  )  (  )
] 

                     

(70) 

4.3.2.5 Perfect Space-Time Codes 

Perfect codes are an extension of the 2x2 Golden Codes for higher dimensions. 

  [

    

  (  )  (  )
    

 (  )  (  )

   (  )   (  )

   (  )    (  )

 (  )  (  )

  (  )  (  )

] (71) 
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It has been said that cyclic algebra codes provides full-rate linear codes while cyclic 

division algebras provide full diversity codes. 

4.3.2.6 Trellis Codes 

Trellis codes offer the best performance at the expense of a complex implementation.  

They are also referred as convolutional codes. Due to the complexity of the design, these 

codes are excluded from this report. 

4.4 Group Theory and Golden Codes 

The concept of an algebraic structure describes a numeric set such as numbers, vectors, 

polynomials, matrices of an invariant form that defines one or more operations such like 

addition, subtraction, multiplication and division. 

Groups are algebraic structure under addition and subtraction. The operands belong to 

the same domain and the result stays in the domain and preserves the same form of its 

operands.  The operands obey associative, distributive and identity laws under 

addition/subtraction or multiplication. Examples of groups are 2x2 matrices defined in 

the real or complex domain. 

[
    

    
]  [

    

    
]  [

    

    
] 

               

(72) 

Rings are algebraic structures under addition, subtraction and multiplication. As in 

groups, the operands belong to the same domain and the result stays in the domain and 

preserves the same form of its operands. It rings obey to associative, distributive and 

identity laws under addition, subtraction and multiplication.  Examples of rings are 

quotient rings of polynomials, modular arithmetic and triangular matrices. 

[
    

   
]  [

    

   
]  [

    

   
] 

               

(73) 
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Ideals are subsets of rings with special properties. The product of any element of a ring 

and ideals results in an ideal.  Examples of ideals are the set of even numbers. Any real 

number multiplied by an even number becomes an even number. 

     {   |   } 

      

                       

(74) 

Fields are algebraic structures under addition, subtraction, multiplication and division. As 

in all the other algebraic structures, the result of an operation stays in the domain of the 

operands. 

4.4.1 Isomorphism and Homomorphism 

Algebraic structures can be mapped into other algebraic structures.  We talk about 

isomorphism when there is a one-to-one transformation between structures. 

Homomorphism is similar to isomorphism except that several element of an algebraic 

structure can be mapped into a single element of the second structure. 

4.4.2 Why Group Theory? 

In STBC design, we look for matrices with full rank and full rate.  Full rank implies the 

existence of a multiplicative inverse.  In addition to this, we require that the difference 

between any two coding matrices is non-singular.  These two features can be found in 

rings. 

4.4.2.1 Example of Alamouti Code 

Alamouti codes are an isomorphism of Hamiltonian quaternions.  The algebraic structure 

defines a basis of one real and three complex quantities { 1, I, J, K } that obeys to the 

following laws: 

                                  (75) 

Any quaternion can be express as linear combination of these four group elements: 

                    (76) 
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The sum of quaternions is also a quaternion: 

                     

                     

            (     )    (     )    (     )    

(77) 

The product of a quaternion is a quaternion: 

      (                   )  (                   )   

 (                   )   

 (                   )    

(78) 

A quaternion conjugate and inverse is defined as: 

 ̅                    (79) 

such that 

 ̅       
    

    
    

 . (80) 

An important isomorphism of the quaternion is the 2x2 matrices. 

   (       )  (       )    (81) 

Substituting base I by the imaginary number i one can map quaternions into matrices: 

       [
            
             

] 

       [
            
             

]  [
    

   
   

 ] 

(82) 

There is a mapping between addition and multiplication operations that can be verified. 
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(83) 

A study of Group Theory revealed that Alamouti matrices are an isomorphic group that 

obeys the same rules of complex quaternions. 

4.4.2.2 Extension of Algebraic Structures 

Extending an algebraic structure means that there is a broader structure such as a group, 

ring or field that includes the elements of the structure. Consider the case of the set of real 

integers Z.  The set forms a ring. This field can be extended to a more general class that 

includes real and complex integers denoted as  [ ] also known as Gaussian Numbers. 

   [ ] (84) 

An element of the extended structure can be represented using the basis { 1, i }. Any 

number in the ring can be expressed as a pair of two real coefficients: 

        

        (   )       
(85) 

A rational number is defined as a number that can be expressed in terms of two integers: a 

numerator and a denominator. 

  {    |     } (86) 

The set of rational numbers forms a field.  The field can be extended to the domain of 

complex integer numbers. 

  {    |     [ ]} (87) 

The extended field holds four real integers. It can be extended further to include the set of 

algebraic numbers.  Algebraic numbers are defined as any possible root of any arbitrary 

rational polynomial. 
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 ̅  {  | ( )     ( )                    } (88) 

A subset of the algebraic numbers is known as the set of quadratic numbers. 

 ̅[ ]  {  √         [ ]} (89) 

A quadratic number can “store” eight integers.  Thus by extending the field one can “store” 

more integer coefficients in a single number structure.  In the case of the Golden Code, a 

quaternion is build using two quadratic numbers.  Thus, the Golden Code can “store” 16 

integer numbers in a 2x2 matrix structure.  This allows getting full rate and full diversity 

code. 

The matrix in (70) forms a division algebra, i.e., a non-commutative division field.  The 

matrix is isomorphic with the cyclic algebra defined as: 

          

       ( ) 
(90) 

The value  must be a non-relative norm and the function (x) defines commutation rules 

for multiplication. 

4.4.3 Algebraic Tools for Code Design 

In the literature, two main theorems have been use in the design of MIMO codes: the 

Lindemann Theorem and algebraic number theorem found in (Perlis, 1952), (Paulraj, 

2003) and (Ma & Giannakis, 2003). 

4.4.3.1 Lindemann Theorem 

Given any distinct algebraic numbers 1,…m and non-zero algebraic numbers a1,…, am, 

then the following inequality holds: 

∑    
  

 

   

   (91) 



 

Approved for Public Release; Distribution Unlimited. 
41 

 

4.4.3.2 Decomposition of the Extension Field 

For a field generator  in field F, any element  can be uniquely expressed as a polynomial 

in  with ai coefficients in F 

∑    
 

 

   

   (92) 

This theorems implies that element =0, then ai=0, but 0 implies that there is at least 

one coefficient ai that is non-zero. 

These theorems look similar, but they are mathematically different.  The first theorem is 

based in the distinction between algebraic and transcendental numbers. A transcendental 

number cannot be expressed as the root of rational polynomials.  The second theorem is 

strictly based in algebraic numbers. 

4.4.3.3 Available Tools for Code Construction 

In the search for mathematical tools, one should be aware of the existence of isomorphism 

of Golden Code. Those isomorphisms may include similarity transformations, rotations, 

scaling, linear mappings and permutations.  These forms do not constitute a new code 

improvement. 

4.4.3.4 Matric Polynomials 

Matric polynomials of degree m may take the form: 

∑    
 

 

   

   (93) 

As long the matrix A is full rank and the symbols ai are not equal to the coefficients of the 

characteristic equation, the determinant of A will not be zero. A careful selection of a 

constellation lattice (or equivalently coefficients ai) may result in matrices with non-

vanishing determinants.  This construction was not explored in this study. 
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4.4.3.5 Companion Matrices 

Companion Matrices are related to matric polynomials. Code constructions with non-

vanishing determinants may be of the form: 

 (           )     ∏(      )

 

   

 (94) 

The design of C must be such that the difference between any code has non-vanishing 

determinants. This construction was not explored in this study. 

4.4.3.6 Variations of the Golden Code 

Another explored form was matrices with determinants similar to the Golden Code. For 

the Golden Code, the determinant is given by: 

   ( )   (     )     (     ) 

 (   )  (  
         

 ) 

   (   )  (  
         

 ) 

(95) 

We note that the determinant has two quadratic multinomials of the same form and one of 

them is rotated 90 degrees (multipled by the imaginary constant) in the complex plane. 

Consider the domain of a and b to be the set of Gaussian integers in some rectangular 

configuration as shown in Figure 9. If we examine the set of points generated by 

evaluating the multinomial  (   ) using all admissible values of a and b, we will note that 

the co-domain are Gaussian integers and there are some empty spaces corresponding to 

Gaussian integers that never occurs.  (The codomain is shown as blue points in Figure 10) 

We also notice that the multinomial codomain of    (   ) falls exactly in these empty 

places as shown in Figure 10.  The minimum value of the determinant of (82) is 

determined by the minimum distance between the blue and red points. This observation 

will be used in the search of new codes. 
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Figure 9. Complex Plane Showing Co-Domain of f(a,b) 
in Blue and i* f(c,d) in Red 

 

4.5 Search for New Codes 

An interesting question in the code design is: is it possible to find codes similar to Golden 

Codes that accommodate more than four symbols?  The answer turned to be affirmative in 

this research.  Unfortunately, the codes that were found have an average power that is 

several times higher than the Golden Code. 

The code structure of the new proposed codes is similar to (95), but it can accommodate 

six symbols as shown in: 

   ( )  |
                            

 (              )               
| 

   ( )   (        )     (        ) 

 (        )  (              )(              )

     
      

      
                          

(96) 

It was possible to find such multinomial by doing a random search. 
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 (        )    
    

    
  (      )     (      )    

 (       )     

|  (  )|        |  (  )|     

(97) 

A plot of the co-domain of (97) is shown in Figure 10, where none of the rotated points in 

red overlap with the blue points. The problem is that the multinomial does not factor as a 

product of linear multinomials. Factoring these terms results in a system of equations that 

is overdetermined. No solution has been found for this particular case. Without this 

factorization, the multinomial is useless as a code. 

 

Figure 10. Complex Plane Showing Co-Domain of f(s1,s2,s3) 
in Blue and i* f(s4,s5,s6) in Red 

 

The next step would be to find a multinomial form that results in an overdetermined 

system, but has at least one solution. The form of this code can be expressed as:  

   
    √   

       

    
   

   
    √   

       

    
   

(98) 
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Equation (98) is a solution obtained by excluding some possible equations of the 

overdetermined system. Some codes have been found by using conjectures about the form 

of the solution rather than using a searching algorithm. These codes are shown in Table 4. 

Table 4. 2x2 Codes with 6 Symbols 

Code Coefficients Average Power* 

A 

        
     √ √    

 
   

     √    

 
   

        
     √ √    

 
   

     √    

 
   

15767 

B 

        
     √ √   

 
   

     √    

 
   

         
     √ √    

 
   

     √    

 
   

14587 

C 

        
   √ √    

 
   

   √    

 
   

        
   √ √    

 
   

   √    

 
   

7488 

Golden 

        
  √ 

 
   

        
  √ 

 
   

200 

*After normalizing code gain. 

The codes found appear to be related to the golden ratio. The term √   keep reappearing in 

the codes found.  If there is such code that exceeds both performance and rate of the 

Golden Code, then such code must belong to some sort of unknown ring in the complex 

domain. The ring, which acts as a place holder for numbers, would be capable of storing 

more integer coefficients such as (99).  One may consider the ring OK of the set K defined 

as:  
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   [               (   )  ] (99) 

The goal would be to find a scheme that stores more integers while keeping the 

determinant and power comparable to those ones of the Golden Code.  This type of 

approach will be explored as part of future work. 

4.5.1.1 Lindemann Theorem 

In this study, we explored the possibility of finding codes of the form: 

  [
                  

 (         )          ] (100) 

by conducting an exhaustive search.  The determinant of the matrix is a linear 

combination of transcendental numbers and the Lindemann theorem applies. 

A common problem with all these codes is that the determinant approaches to zero when 

the constellation size grows. Although, Lindemann theorem and field extension 

decomposition deal with different set of numbers: transcendental and algebraic, it is 

always possible to find a transcendental number sufficiently close to an algebraic number 

(Niven, 1953). A number theory theorem states that any irrational number can be 

approximated with infinitely many rational numbers h/k such that: 

|  
 

 
|  

 

√    (101) 

Finding a good approximation of an irrational number is what causes the determinant to 

go to zero.  If we consider only the diagonal elements of the proposed structure (100), 

then: 

   ( )                (102) 

Solving for zero yields: 

  

  
 

   

    
(103) 
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but under the assumption that a and b are integers, it follows that: 

|  
  

  
|  

 

√   
     (   )

 (104) 

Within the approximations of an irrational number, one must find the worst 

approximation of rational numbers.  For a case of two symbols a and b, it is easy to find 

values that maximizes the determinant.  But for the case of four symbols, it the task is 

extremely difficult.  A Matlab simulation shown in Figure 11 shows this fact. 

 

Figure 11. Minimum Determinant of Code 
based on Lindemann Theorem (102) 

In Figure 11, the imaginary and real part of the exponent has been plotted. The real part 

goes from -0.3 to 0.88 using 500 steps (shown in the figure) and the imaginary part goes 

from 0 to 2 using 400 steps.  The color plot shows the magnitude of the determinant.  

There is possible to find codes (represented in yellow and red) using Lindemann Theorem 

such that the determinant is greater or equal than one.  Finding full rate codes (using 

coefficients a, b, c and d) is far more difficult task. 
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5 Conclusions 

Two methods for classification of modulation types were developed:  LRT for spread 

spectrum and EM based for QAM and MPSK. 

The first method, which is a classical LRT, provided the desired results when using a 

modified version of the TSC metric for averaging waveform coefficients using a 2x2 

Hadamard matrix.  Mathematica provided over 1000 exponential terms for this simple 

case. The LRT test for waveforms using a 4x4 Hadamard matrix is extremely complicated. 

As a future development, we would attempt to find either a recursive formula based on 

2x2 Hadamard codes or deducing some empirical approximation of the LRT. 

The second classification method provided a numerical approximation of the symbols on 

conventional modulation types such as MPSK and QAM. The convergence of the algorithm 

seems to be an issue for complex QAM constellations.  As a future development, we will 

attempt to improve convergence using Newton’s method instead of Gradient Descend.  

The method will also be extended to BPSK-SS following a Yao’s proposed EM algorithm. 

(Yao & Poor, 2000) 

As part of the effort, we also investigated the design of codes that could outperform the 

current best-known code: the Golden Code.  It was possible to find finite codes with higher 

rates, but also with a higher average power.  Future work will include the development of 

algorithms that conduct a constraint search of these new codes. The goal will be looking 

for codes with higher spectral rates and similar average power to the Golden Code. 
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Appendix A 

The development of the likelihood function for a process starts with an orthogonal series 

representation. 

 ( )   ∑    ( )

 

   

 (1) 

The signal  ( ) is an Additive Gaussian Noise (AWGN) process with mean zero and 

variance     . 

 ( )   ∑    ( )

 

   

 

 {  }    

 {    }  
  

 
    

(2) 

A theorem from decision theory tells that the sum of zero mean Gaussian processes is 

Gaussian, so the coefficients    produced by the orthogonal basis decomposition are 

Gaussian random variables. 

 ( )   ( )   ( )   ∑    ( )

 

   

 

 

(3) 

The variables {  } have mean {  } and variance {
  

 
   }. The variables {  } are also 

independent. 

 {  }    

 {|(     )|
 
}  

  

 
    

(4) 
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Processes  ( ),  ( ) and  ( ) can be approximated by selecting a finite set of coefficient. A 

PDF can be constructed if the coefficients are finite N. 

A likelihood ratio test can be constructed as follows: 

 ( ( ))  
  ( ( )|  )

  ( ( )|  )
  

 ∑
(     )

  (  
    

 )
 

  

 
    (5) 

The expression allow us to arbitrary choose any number of coefficients. If we extend the 

number to infinity, then we have: 

 ( ( ))     
   

  ( ( )|  )

  ( ( )|  )
 

 

 ( ( ))   
 ∑

( ( )  ( |  ))
  ( ( )  ( |  )) 

  

 
    

(6) 

 

The likelihood function is defined as a density function: 

 ( ( ))   
 ∑

( ( )  ( |  )) 

  

 
    (7) 
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Appendix B 

BPSK Development 

The hypothesis is implicit in the selected model. In the case MPSK signals we have: 

 (     )   ∑ √            (    )

   

   

                 (8) 

For unknown types, the phase of the symbol    belongs to a set of   elements: 

   {
   

 
}
        

 (9) 

The pulse is defined as an ideal square pulse with period T.  The likelihood can be 

simplified to: 

 ( ( ))  ∏   
{ √   {   

      ( )}  }

   

   

 (10) 

where   is the SNR at the output of the decorrelator and    ( ) is the decorrelator output. After 

some math, the likelihood expression becomes: 

 ( ( ))  
 

 
    (    (√   {       ( )})) (11) 

 

BPSK Spread Spectrum Development 

This development assumes uniformly distributed coefficients. 

   
{ √   {   

    ∑    
     

      ( )}  }   ∫  √   {   
    ∑    

     
      ( )}  

  

 

 (  )    

 (  )   
 

 
∑  (     

   
 )

 

   

 

 

(12) 

For        
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 ( ( ))  ∏∏       (√   {        ( )})

 

   

   

   

 

 

(13) 

The correlation term    ( ) can be substituted by   ( ). This means that for this simple case 

the likelihood of BPSK and BPSK spread spectrum are the same. The ratio test will not be 

able to differentiate between BPSK and spread spectrum under the assumption of 

statistically independent symbols. 
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Appendix C 

BPSK Spread Spectrum Development with Weights 

The equations were derived using Mathematica.  This is the likelihood when using a 2x2 

Hadamard matrix. 
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BPSK Spread Spectrum Development with Weights 

The equations were derived using Mathematica.  This is the likelihood when using a4x4 

Hadamard matrix. 
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The likelihood function has 1228 exponential terms. The terms are combinations of the 

vectors components of the spread spectrum signal. 
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List of Acronyms 

ALRT Average LRT 

BPSK Binary Shift Keying 

BPSK-SS BPSK Spread Spectrum or CDMA 

DKL Kullback-Leibler Information Divergence 

GLRT Generalized LRT 

HLRT Hybrid LRT 

LRT Likelihood Ratio Test 

MIMO Multiple Input Multiple Output System 

MPSK M-ary Shift Keying 

No Normalized Noise Power 

Pdf Probability Density Function 

PEP Pairwise Error Probability 

QAM Quadrature Amplitude Modulation 

ROC Receiver Operating Characteristic 

STBC Space-Time Block Codes 

TSC Total Squared Correlation 

θ Golden Ratio 

  Real Numbers 
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  Rational Numbers 

  Complex Numbers 

 [ ] Gaussian Integers 

 (    ) Gaussian Distribution with mean   and variance    

 


